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A B S T R A C T
Relapsed and/or refractory Richter transformation (RT) is generally associated with poor
response to available therapies and a short survival time. As RT patients were excluded
from participating in the pivotal studies of chimeric antigen receptor T cell therapy (CAR-
T) for large B-cell lymphoma, there is a paucity of information about the efficacy of CAR-T
in RT. Therefore, through the Center for International Blood and Marrow Transplant
Research (CIBMTR) registry, we analyzed data from 140 RT patients who received anti-
CD19 CAR-T between 2018 and 2023. Patients had received a median of 3 lines of therapy
for RT (range: 1 to 8), with nearly 43% being exposed to a Bruton’s tyrosine kinase inhibi-
tor and/or venetoclax. Axicabtagene ciloleucel (axi-cel) (65%) and tisagenlecleucel (tisa-
cel) (28%) were the most commonly prescribed products. Grade �3 cytokine release syn-
drome and immune effector cell-associated neurotoxicity syndrome occurred in 9.4%
and 20%, respectively. After a median follow-up of 25 months (range: 1.8 to 61.5) from
CAR-T infusion, 2-year progression-free and overall survival were 32.5% (95% CI, 24 to
41) and 46.6% (95% CI, 38 to 58), respectively. The 2-year cumulative incidence of relapse
and non-relapse mortality were 58.8% (95% CI, 50 to 67), and 8.7% (95% CI, 4% to 14%),
respectively. Poor performance status and refractory disease before CAR-T infusion were
predictive of inferior survival and disease progression. Our results show that anti-CD19
CAR-T can function as an effective treatment modality for a proportion of RT patients.

© 2025 The American Society for Transplantation and Cellular Therapy. Published by
Elsevier Inc. All rights are reserved, including those for text and data mining, AI training,

and similar technologies.
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INTRODUCTION
Richter transformation (RT) represents an evolu-

tion of chronic lymphocytic leukemia/small lympho-
cytic lymphoma (CLL/SLL), commonly to a diffuse
large B-cell lymphoma (DLBCL) histology, occurring
in» 3% to 10% of patientswith CLL,with an observed
overall incidence of up to 1% per year [1�4].

The clinical course of RT is typically aggressive,
driven by the presence of high-risk genetic
markers, previous treatment history, clonal rela-
tionship with CLL and patient-specific factors.
Standard treatment of RT is usually modeled after
de novo DLBCL management guidelines, with
anthracycline-based multi-agent chemoimmuno-
therapy (CIT) generally being employed as the
first line therapy in fit patients. Further, consolida-
tion with hematopoietic cell transplantation
(HCT), particularly allogeneic, has been shown to
provide durable remissions in a proportion of
transplant eligible patients who have achieved
complete response (CR) [3,5]. However, RT
patients are often ineligible for intensive CIT or
HCT attributed to frailty [6]. Moreover, due to the
preponderance of high-risk genetic markers, and
inherent resistance to therapy, response rates to
RT-directed CIT are often low and short-lived
[5�8]. Therefore, median overall survival (OS) is
poor, approximately 12 months, in high-risk RT
patients [1,9�11]. Although the advent of veneto-
clax and Bruton’s tyrosine kinase inhibitors (BTKi)
has expanded treatment options for RT, short
duration of response remains a clinical challenge
[12]. RT progressing after failure of venetoclax
and BTKi has an even worse anticipated median
OS of »4 to 6 months illustrating the critical need
for developing newer treatment strategies for
these patients [6,13�15].

The development of anti-CD19 chimeric anti-
gen receptor T-cell therapy (CAR-T) has provided
a significant breakthrough for the treatment of
various relapsed or refractory (R/R) non-Hodgkin
B-cell malignancies. Despite questions regarding
constitutional T-cell dysfunction and exhaustion
in CLL, a few early studies showed potential effi-
cacy of anti-CD19 CAR-T in CLL and RT [16�20]. In
spite of these encouraging data, patients with RT
were still excluded from participating in the piv-
otal registrational trials that led to approval of
anti-CD19 CAR-T for the treatment of R/R DLBCL
by the US Food and Drug Administration (FDA)
[21,22]. Although the prospective TRANSCEND-
NHL-001 trial of lisocabtagene maraleucel (liso-
cel) allowed enrollment of patients with DLBCL
transformed from any indolent non-Hodgkin lym-
phoma (iNHL), only 5 patients with RT were
included in that study [23]. Similarly, the TRASN-
CEND- CLL-004 study of liso-cel also excluded
patients with RT [24].

Nevertheless, due to limited treatment options,
off-label use of anti-CD19 CAR-T has been well
adopted into clinical practice for the treatment of
RT under the indication of DLBCL, and thus, the
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gap in evidence supporting the clinical efficacy of
CAR-T for RT has been largely addressed by retro-
spective studies [25,26].

Adding to the existing data and experience,
here, we report results from a CIBMTR analysis of
patients with DLBCL type RT who received com-
mercially approved anti-CD19 CAR-T.

METHODS
Data Source

This is a retrospective registry-based study. The
CIBMTR is a working group comprised of over 380
transplantation centers worldwide that provide
data regarding cellular therapies to a statistical
center at the Medical College of Wisconsin
(MCW). Data quality is augmented through com-
puterized affirmation of discrepancies, physicians’
review of submitted data, and on-site audits of
participating centers. Observational studies are
conducted by the CIBMTR in compliance with all
pertinent federal regulations regarding the pro-
tection of human research participants. All
patients included in this analysis have provided
written consent for research. The Institutional
Review Board of MCW has approved this study.

Patients
Adult patients (� 18 years) with a diagnostic

indication of DLBCL type RT from pre-existing CLL
who had received one of the commercially
approved anti-CD19 CAR-T products, namely axi-
cel, tisa-cel or liso-cel, between 2018 and 2023
and had data reported to the CIBMTR registry
were included in this analysis.

Definitions and Endpoints
OS was the primary study endpoint. Secondary

endpoints included progression-free survival
(PFS), cumulative incidence of progression/relapse
(CIP/R), nonrelapse mortality (NRM), incidence of
cytokine release syndrome (CRS), and immune
effector cell-associated neurotoxicity syndrome
(ICANS). Death from any cause was considered an
event for OS analysis. For PFS, progression/relapse
or death from any cause were considered events.
NRM was defined as death without evidence of
prior lymphoma progression/relapse, where
relapse was considered a competing risk. Bridging
was defined as any therapy, including radiation,
administered between apheresis and lymphode-
pletion (LD), or a patient’s last line of treatment
before CAR-T if it was continued after apheresis.
Disease response to the last line of therapy before
CAR-T was defined using the Lugano Classification
[27]. American Society for Transplantation and
Cellular Therapy (ASTCT) criteria were used to
grade the severity of CRS and ICANS [28].
Statistical Analysis
Baseline characteristics of the study population

were described. Kaplan-Meier estimates were
used for OS and PFS. Cumulative incidence was
calculated for progression/relapse and NRM to
handle competing risks. Forest plots were created
to present hazard ratios (HR) and their 95% confi-
dence intervals (95% CI) based on the univariable
Cox model for OS and the univariable proportional
cause-specific hazards model for relapse. All sta-
tistical analyses were performed using SAS ver-
sion 9.4 (SAS Institute, Cary, NC) and R version 4.4
(Vienna, Austria).
RESULTS
Patient Characteristics

One hundred and forty patients from 66 centers
met inclusion criteria, of which 93 patients were
found to have de novo RT. Table 1 shows relevant
demographic, baseline disease, and treatment-
related characteristics of the study population.
The median age of patients at the time of CAR-T
infusion was 66.5 years (range: 30 to 83). Most
patients were male (62.1) and Caucasian (77.1%),
while Blacks were 7.1%, Asians 5.7% and Hispanics
5.7%. Fifty-three (37.9%) patients had an HCT
comorbidity index (HCT-CI) �3 and over half the
patients (n = 75, 54.3%) had a Karnofsky perfor-
mance status (KPS) <90 at the time of CAR-T infu-
sion.

At the time of RT diagnosis, extra nodal disease
was present in 74 (52.9%) patients and deletion of
chromosome 17p was reported in 53 (37.9%)
patients. Treatment information only since the
diagnosis of RT was available and analyzed here.
CLL treatment data were not available for this
analysis. The median number of lines of therapy
prescribed for RT treatment before the CAR-T
infusion was 3 (range: 1 to 8). A total of 18.6% of
patients with clinical evidence of RT received ven-
etoclax, 24.3% received BTKi, and 6.4% both
agents, before CAR-T. A total of 27 patients
(19.3%) had previously received an allogeneic
(n = 16, 11.4%) or an autologous (n = 11, 7.9%) HCT
for RT. Sixty-seven patients (47.9%) received some
form of bridging therapy. Of this, notably, 27
(19.3%) patients received multi-agent CIT, 11
(7.9%) got single agent chemotherapy, 6 (4.3%)
single agent monoclonal antibody, 8 (5.7%)
received a BTKi or an immunomodulatory agent,
and 8 (5.7%) received radiation therapy.



Table 1
Baseline Characteristics of RT Patients Who Received Anti-
CD 19 CAR-T between 2018 and 2023

Characteristic N = 140 (%)

Age in years at CAR-T, median
(min-max)

66.5 (range, 31-83)

�60 years 104 (74.3)

Female sex 53 (37.9)

Race

White 108 (77.1)

Black or African American 10 (7.1)

Asian 8 (5.7)

Other/Not reported 14 (10)

Ethnicity

Not Hispanic or Latino 117 (83.6)

Hispanic or Latino 8 (5.7)

Nonresident of the U.S 9 (6.4)

Unknown 6 (4.3)

Karnofsky performance status
prior to CAR-T

90-100 51 (36.4)

<90 76 (54.3)

Not reported 13 (9.3)

Hematopoietic cell transplanta-
tion—comorbidity index

0 31 (22.1)

1-2 50 (35.7)

3+ 53 (37.9)

Not reported 6 (4.3)

No. of prior lines of therapy for
RT—median (min-max)

3 (1-8)

Prior allogeneic transplant 16 (11.4)

Prior autologous transplant 11 (7.9)

Bridging therapy

Yes 67 (47.9)

No 51 (36.4)

Not reported 22 (15.7)

Disease status prior to CAR-T

CR 13 (9.3)

PR 34 (24.3)

Resistant 87 (62.1)

Untreated 2 (1.4)

Unknown 4 (2.9)

Bulky disease

�5 cm 19 (13.6)

5 cm 75 (53.6)

Not reported 46 (32.9)

Time from diagnosis to CAR-T,
months—median (min-max)

10.7 (1.7-276.3)

Lymphodepletion regimen

Bendamustine based 10 (7.1)

Cyclophosphamide +
fludarabine

130 (92.9)

CAR-T product

Axicabtagene ciloleucel 91 (65)

Tisagenlecleucel 39 (27.9)

Lisocabtagene maraleucel 10 (7.1)
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Response assessment was available and
reported for the DLBCL component. The modality
of assessment varied per treating center’s discre-
tion and consisted of either a positron emission
tomography and computed tomography (PET-CT);
n = 122, or a plain CT. At the time of the last dis-
ease restaging prior to administering lymphode-
pleting (LD) chemotherapy, the majority of the
patients had resistant disease (n = 87, 62.1%) with
19 (13.6%) having residual bulky disease (> 5cm).
Only a small fraction of patients had achieved CR
(n = 13, 9.3%), while partial response (PR) was
obtained in 34 (24.3%) patients. The median time
between diagnosis of RT and CAR-T infusion was
10.7 months (range: 1.7 to 282). Nearly all
patients (93%) received cyclophosphamide plus
fludarabine as the LD regimen except for 10 (7%)
patients who received bendamustine-based LD.
Axi-cel was the most prescribed CAR-T product
(65%).

Safety and Toxicity
CRS of any grade was reported in 73% of

patients. Grade 1 CRS was reported in 39.3% and
grade � 3 CRS in 13 (9.4%). The incidence of ICANS
of any grade was 35.7%, and grade �3 ICANS was
reported in 28 (20%) patients. The median times
to onset of CRS and ICANS were 3 days (range: 1
to 31) and 5 days (range: 1 to 18), respectively.
Grade 5 CRS and /or ICANS was reported in 5
patients in total (3.6%) (Supplemental Table 1).
Most of the high grade ICANS were contributed by
axi-cel as it was the most predominantly used
product. A breakdown and comparison of the
rates of CRS and ICANS per product type are pro-
vided in Supplemental Table 2.

The leading cause of death was disease recur-
rence/progression (66.2%), followed by infections
(9.6%) and second primary malignancies (5.4%)
(Supplemental Table 3). Notably, the coronavirus
disease of 2019 (COVID-19) was the predominant
cause among infections (n = 4, 5.5%). Further
information about the specific second primary
malignancies were not available.

Efficacy
Among 128 evaluable patients, the overall

response rate (ORR) following CAR-T infusion was
71% (92/128). The CR rate was 57% (73/128). After
a median follow-up of 25 months (range: 1.8 to
61.5) from CAR-T infusion, 2-year PFS and OS
were 32.5% (95% CI, 24.2 to 41.4) and 46.6% (95%
CI, 37.7 to 55.7), respectively. The 2-year CIP/R
and NRM were 58.8% (95% CI, 49.8 to 67.6) and
8.7% (95% CI, 4.2 to 14.6), respectively (Figure 1).



Figure 1. NRM, CIR/P, PFS, and OS of patients with RT treated with anti CD19 CAR-T therapy from the CIBMTR registry.
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Outcomes for the exclusive liso-cel cohort are
shown in Supplemental Table 4.

Poor Karnofsky performance status, (HR = 1.76,
95% CI, 1.05 to 2.93), and refractory disease pre-
LD, (HR = 2.30, 95% CI, 1.33 to 3.99) were signifi-
cantly associated with shorter OS, while only
refractory disease was found to be significantly
associated with shorter PFS (HR = 1.97, 95% CI,
1.21 to 3.20) (Figure 2A,B). Refractory disease was
Figure 2. (A) Forest plot of variables associated with overall survi
of variables associated with progression-free survival identified w
also associated with higher relapse risk
(HR = 1.84, 95% CI, 1.10 to 3.06) (Supplemental
Figure 1). Receipt of bridging therapy showed a
significant association with shorter PFS
(HR = 1.83, 95% CI, 1.13 to 2.94) and higher relap-
ses (HR = 1.93, 95% CI, 1.15 to 3.26) while having
no impact on OS. Also, unexpectedly, we found
that exposure to �3 lines of therapy for RT pre-
CAR-T was associated with a favorable OS
val identified with the univariable Cox model. (B) Forest plot
ith the univariable Cox model.



Figure 2. Continued.
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(HR = 0.48, 95% CI, 0.30 to 0.79), and PFS
(HR = 0.62, 95% CI, 0.39 to 0.97). Eight patients
have undergone subsequent allogeneic HCT. How-
ever, long-term survival data pertaining to this
specific cohort are not available for reporting at
the time of this analysis.

We separately analyzed the outcomes of
patients with early treatment failure as defined by
the Zuma-1 study criteria [29]. The early treat-
ment failure group includes those with primary
refractory disease. There was no statistical differ-
ence between the groups, in 2-year PFS (40.4%
[95% CI, 22.1 to 60.1] vs. 30.6 [95% CI, 21.5 to
40.6], P = .257) and 2-year OS (53.3% [95% CI, 34.5
to 71.7] vs. 44.5% [95% CI, 934.5 to 54.8], P = .477);
Supplemental Table 5).

DISCUSSION
In this relatively large registry study, we found

that anti-CD19 CAR-T therapy demonstrated clini-
cal activity in a subset of heavily treated and high-
risk RT patients—with a significant number of
patients having refractory disease (62%) at pre-LD
restaging, and 42.9% having had prior exposure to
BTKi and/or venetoclax. Two-year PFS and OS
were 32.5% and 46.6%, respectively. These results
are encouraging, especially when compared to the
historical data that suggest an anticipated median
survival of approximately 6 months after failing
to respond to or progress on venetoclax and BTKi
[6,12�14]. Our results complement the cumula-
tive experience of smaller prospective [18,23,30]
and observational studies [25,26,31�33], showing
anti-CD19 CAR-T as a potentially effective treat-
ment modality for RT.

Although the ORR and CR achieved in this high-
risk population—71% and 57%, respectively—are
encouraging, the non-enduring responses, evi-
denced by a CIP/R of 58.8% at 2 years, remain a
major hurdle to be addressed in future studies.

The observed incidence of grade �3 CRS and
ICANS incidence (9.4% and 20%, respectively) in
our cohort was in-line with data reported in the
pivotal trials of CAR-T for R/R DLBCL [21,22].
These results are somehow reassuring given con-
cerns about the possibility that concurrent mar-
row involvement with CLL, particularly if present
in high burden, could contribute to increased tox-
icity [24,33�35].

While acknowledging the limited statistical
power, we did not find any significant differences
in outcomes by the type of CAR-T product used
(Figure 2A,B). While limited evidence exists
regarding variation in efficacy or toxicity rates
among the commercially available anti-CD19
CAR-T products specifically in RT or transformed
iNHL, one recent study suggested that axi-cel
might yield higher CR rates, albeit at the expense
of higher toxicity [36]. These findings need confir-
mation in larger studies. Of note, a higher rate of
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ICANS was observed in the axi-cel cohort in this
study, which is attributed to the likely predomi-
nant use of the product.

In our study, unsurprisingly, lower physical
performance scores and disease refractoriness at
the time of LD correlated with inferior survival. It
is possible that sub-optimal performance could be
just a surrogate for an aggressive disease biology
and/or heavy treatment exposure. Other CAR-T
studies in RT have identified higher Ki-67 prolifer-
ation index, elevated C-reactive protein, an above-
normal lactate dehydrogenase level, and presence
of bulky adenopathy and refractory disease at the
time of LD as predictive markers for relapse and
shorter PFS [25,37]. Collectively, these findings
underscore the importance of attaining better dis-
ease control prior to CAR-T. Development of ther-
apeutic agents with novel modes of action and
higher efficacy is critically needed in RT and sev-
eral trials are currently underway [38�43]. One
such promising effort was the recently published
results from the RT subgroup of the open-label
phase 1/2 BRUIN study which showed favorable
responses with selective noncovalent BTKi pirto-
brutinib in R/R RT, even after previous exposure
to covalent BTKi [44].

As previously discussed, consolidative autolo-
gous or allogeneic HCT has demonstrated the
capability of producing prolonged remissions in a
proportion of RT patients who have achieved CR
with prior therapies [5]. It is, therefore, conceiv-
able that an allogeneic HCT consolidation follow-
ing CAR-T be given an important consideration to
induce sustained responses in eligible patients.
This would be even more crucial if longer follow-
up of our cohort shows relapses over time in those
who achieved post-CAR-T remissions.

Additional barriers to achieving wider success
of anti-CD19 CAR-T therapy in CLL and RT are
related to the inherent problem of T-cell exhaus-
tion and inadequate expansion [19,20].

Insights gained from extensive pre-clinical
studies and clinical trials showed that concurrent
BTKi with CAR-T infusion could mitigate some of
the challenges posed by T-cell exhaustion. A few
prospective clinical trials have already demon-
strated that combining anti-CD19 CAR-T and ibru-
tinib is feasible, and could result in higher
response rates that are durable even after prior
BTKi exposure, without increasing toxicities
[18,37,45]. Similar efforts are ongoing to augment
CAR-T function and improve responses by com-
bining it with BTKi and/or checkpoint inhibitors
for CLL, RT and in other NHL, some of which have
reported positive preliminary results [45�48].
We acknowledge that our study has inherent
limitations. Prominently, details pertaining to
treatment history and the status of CLL at the time
of CAR-T infusion and at disease relapse, were not
immediately available. This limited our under-
standing of the true treatment exposure and its
impact on the outcomes in our population. Infor-
mation about post-CAR-T management with and
without relapse of RT, subsequent treatments,
and how these could have affected the long-term
outcomes were also not available. Due to these
constraints, we were unable to perform more
detailed analyses on outcomes. The clonal associa-
tion of RT with CLL was also not known.

In conclusion, the collective results from our
study along with other published reports support
the role of CAR-T in RT. We recognize the limita-
tions of CAR-T, and therefore, enrolling RT
patients in various ongoing clinical trials for CAR-
T and other novel cellular therapies is paramount
and must be prioritized. Future trials could focus
on determining the optimal combinations, timing
and placement of CAR-T and HSCT in the RT treat-
ment algorithm. Our observations warrant inves-
tigation of CAR-T as an earlier line of therapy in
RT when the disease burden is lower.
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